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Abstract

In many species, spermatogenesis involves more cell divisions than oogenesis, and the male germline, therefore, accumulates

more DNA replication errors, a phenomenon known as male mutation bias. The extent of male mutation bias (a) is estimated by

comparing substitution rates of the X, Y, and autosomal chromosomes, as these chromosomes spend different proportions of

their time in the germlines of the two sexes. Male mutation bias has been characterized in placental and marsupial mammals as well

as birds, but analyses in monotremes failed to detect any such bias. Monotremes are an ancient lineage of egg-laying mammals

with distinct biological properties, which include unique germline features. Here, we sought to assess the presence and potential

characteristics of male mutation bias in platypus and the short-beaked echidna based on substitution rate analyses of X, Y, and

autosomes.Weestablished thepresenceofmoderatemalemutationbias inmonotremes, corresponding toana valueof2.12–3.69.

Given that it has been unclear what proportion of the variation in substitution rates on the different chromosomal classes is really

due to differential number of replications, we analyzed the influence of other confounding forces (selection, replication-timing,

etc.) and found that male mutation bias is the main force explaining the between-chromosome classes differences in substitution

rates. Finally, we estimated the proportion of variation at the gene level in substitution rates that is owing to replication effects and

found that this phenomenon can explain>68% of these variations in monotremes, and in control species, rodents, and primates.
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Introduction

The presence of male mutation bias was proposed by Haldane

in 1947 (Haldane 1947) as an explanation for why

hemophilia-causing mutations are more often inherited

from the father than the mother. Haldane’s prediction that

the mutational rate would be higher in the male compared

with the female germline was later supported by the obser-

vation that spermatogenesis involves a higher number of rep-

lication cycles than oogenesis, leading to an increase in the

male mutation rate due to replication errors (Drost and Lee

1995; Hurst and Ellegren 1998; Li et al. 2002; Makova and Li

2002; Ellegren 2007). It has been well documented in great

apes and rodents that the maternal gametes go through

fewer genome replications than the paternal ones. This is

because the maternal population of gametes has already

been formed at birth of the future mother and maturation

does not include further cell divisions besides meiosis (Chang

et al. 1994; Drost and Lee 1995), whereas in males, by con-

trast, the formation of gametes (spermatogenesis) continues

throughout adult life and necessitates a constant renewal of

the initial spermatogenic cell (spermatogonia) pool through

mitosis (Kanatsu-Shinohara and Shinohara 2013).

In 1987, Miyata and colleagues developed a framework to

quantify male mutation bias (a) by contrasting the rates of

neutral evolution on the sex chromosomes and autosomes

(Miyata et al. 1987). In the presence of male mutation bias,

the Y chromosome, which spends all its time in males, is

expected to show the highest evolutionary rate, followed by

the autosomes, which spend half their time in males and half

in females, and finally the X chromosome, which spends only
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one-third of its time in males. Thus, a can be estimated using

the following three equations, where A, X, and Y are the rates

of neutral evolution for the autosomes, X chromosome, and Y

chromosome, respectively:

aðY=XÞ ¼ 2=½ð3X=YÞ � 1� (1)

aðY=AÞ ¼ 1=½ð2A=YÞ � 1� (2)

aðX=AÞ ¼ ½4� ð3X=AÞ�=½ð3X=AÞ � 2� (3)

Miyata’s framework assumes that 1) the analyzed substitu-

tions are selectively neutral, 2) multiple substitutions are

accounted for with appropriate correction methods, 3) errors

during replication are the unique source of genomic variation,

and 4) replication errors are uniformly distributed throughout

the genome. Provided that these conditions are met, the three

equations should give the same estimate of a, which should

furthermore equal the ratio of male over female germ cell

divisions. Based on Miyata’s equations, the male mutation

bias has been estimated to be high in human and chimpanzee

(a> 4) (Shimmin, Chang, and Li 1993; Makova and Li 2002;

Presgraves and Yi 2009; Conrad et al. 2011; Kong et al. 2012;

Venn et al. 2014), and moderate in mouse (a¼ 1–3.5) (Wolfe

and Sharp 1993; McVean and Hurst 1997; Smith and Hurst

1999; Li et al. 2002; Malcom et al. 2003; Sandstedt and

Tucker 2005). However, a number of diverging studies found

that the three estimators of a are highly discordant and that

autosomes and Y chromosomes evolved at similar rates in

mouse and rat (McVean and Hurst 1997; Smith and Hurst

1999; Pink et al. 2010). Hence, these studies challenged pre-

vious results and suggested that Miyata’s equations may pro-

vide incorrect estimates, as they do not consider other factors

besides replication errors that might contribute to differences

in substitution rates between chromosomal classes (e.g., gene

conversion, replication timing, or recombination rates

[Shimmin, Chang, Hewett-Emmett, et al. 1993; Pink and

Hurst 2010; Pink et al. 2010]).

In a recent genome-wide study based on autosomal and X

chromosome sequences, Wilson Sayres et al. (Wilson Sayres

et al. 2011) detected strong signals of male mutation bias

across 32 placental mammals, in particular in species with

long generation times (Wilson Sayres et al. 2011), consistent

with previous observations in birds (Bartosch-Harlid et al.

2003). However, when the authors repeated the analysis for

the human and chimpanzee genomes while including the full

sequence of the Y chromosome, they obtained discrepant

estimates of a with Miyata’s three equations (Wilson Sayres

et al. 2011). Similar observations have also been made for

birds and rodents (Axelsson et al. 2004; Pink et al. 2010).

These results further support the idea that replication errors

might not explain all of the variation observed between chro-

mosomal classes, confirming that other factors should be

taken into consideration (Shimmin, Chang, Hewett-Emmett,

et al. 1993; Pink and Hurst 2010; Pink et al. 2010). Given that

the Y chromosome is more likely to be prone to background

selection and hitchhiking effects, it has been assumed that

these factors could influence the observed substitution rate of

this chromosome, resulting in discrepant a estimates. These

processes modulate effective population size of the entire

nonrecombining section of a Y chromosome thus affecting

the fate of weakly deleterious mutations (but should have

little influence on perfectly neutral sites, where the substitu-

tion rate should be equivalent to the mutation rate [Birky and

Walsh 1988]). The effects on estimation of a of differential

activity of processes such as gene conversion have been rela-

tively little explored.

Given the exceptionalism of the Y chromosome it has been

often assumed that the X/A comparison is more reliable

(Wilson Sayres et al. 2011). However, the X chromosome is

affected by selection due to the decay of the Y chromosome

(strong purifying selection in males) (Delgado et al. 2009); has

unusual replication timing (Pink and Hurst 2010), it being one

of the last ones to be replicated which should increase its

substitution rate; has lower content of CpG sites (Saxonov

et al. 2006) that would diminish the substitution rate and

possibly lower germline transcription-coupled repair, which

may also modulate the substitution rate, as X-linked genes

tend to be relatively tissue specific (Lercher et al. 2002).

Hence, it is uncertain whether the X/A comparison would

provide the most accurate a estimate. Thus comparisons

employing Y we argue would be valuable. An important rea-

son for the lack of the Y (and W) chromosomes from male

mutation bias studies is because these chromosomes are of-

ten missing from whole-genome sequencing projects owing

to their repeat-rich nature and because studies often prefer to

sequence the homogametic sex to maximize read counts for

each chromosome. The recurrent lack of information from

these sex chromosomes has therefore limited the study of

Miyata’s equations and the study of other potential factors

influencing a.

We recently reconstructed Y-linked transcripts across all

three major mammalian clades (placentals, marsupials, and

monotremes) (Cortez et al. 2014). Based on synonymous sub-

stitutions within X/Y gametologs, we were able to detect

signatures of male mutation bias in placental mammals and

marsupials, but not in monotremes, represented by the platy-

pus and short-beaked echidna. However, the limited number

of exonic sequences from 14 XY gametologs, together with

potential negative selection acting at synonymous sites limited

the statistical power of this analysis and prevented us from

drawing firm conclusions regarding the presence of male mu-

tation bias in monotreme mammals (Cortez et al. 2014).

Monotremes show several biological peculiarities that in-

clude egg-laying, spurs and venom production (only platypus

[Wong et al. 2013]). Platypus also shows many genomic-

specific features (Warren et al. 2008) that include an atypical

sex system composed of ten different chromosomes (Rens

et al. 2004; Rens et al. 2007), which originated independently

from the X and Y chromosomes in other mammalian lineages
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(Veyrunes et al. 2008). Furthermore, even the germline in this

lineage shows remarkable peculiarities since platypus lacks

MSCI (Daish et al. 2015). Therefore, these unique features of

monotremes may also include an unusual male mutation bias.

We, therefore, decided to perform an extended analysis of

male mutation bias in platypus and echidna. By calculating

substitution rates of the monotreme X, Y, and autosomal

chromosomes based on curated intronic alignments, we dem-

onstrate the presence of male mutation bias in monotremes.

We estimate an a ranging from 2.12 to 3.69 for monotremes,

which corresponds to a moderate bias. Moreover, our analy-

ses are also useful to estimate the proportion of variation in

substitution rates that is owing to replication effects. The

results in monotremes and mammalian control species sug-

gest that male replication bias might account for>68% of

the observed differences at the gene level. We used the same

type of short genomic reads for all species, thus allowing us to

apply the same methodology. Finally, it is important to note

that our methods can be applied to nonmodel species with

poor genome assemblies and may be used to further illumi-

nate patterns of male mutation bias across vertebrates.

Materials and Methods

Genomic Assemblies

In two previous studies (Cortez et al. 2014; Necsulea et al.

2014), we generated paired-end genomic reads for platypus,

echidna, marmoset and rat using standard Illumina protocols

(Truseq DNA) and HiSeq2000 sequencing platform. Male mu-

tationbiashasbeenwell characterized inprimatesandrodents,

thusallowingus touse themascontrol species. Supplementary

table 1, Supplmentary Material online, contains detailed infor-

mation regarding the genomic data used in this study (number

of reads, GenBank accession numbers, etc.).

In order to obtain male genomic assemblies for platypus,

marmoset and rat that would increase the chances of having

long Y-linked scaffolds and would reduce the chances of hav-

ing chimeric Y sequences (sequences that combine both X

and Y gametolog sequences), we applied a male–female sub-

traction approach similar to the one described by Cortez et al.

(2014). First, we mapped the Illumina male genomic paired-

end reads from platypus, marmoset and rat to their corre-

sponding female reference genomes; reference genomes

were downloaded from the Ensembl database (release 77)

(Flicek et al. 2014). We allowed two mismatches per read,

and retained only those read-pairs of which none of the

paired reads were mapped. We then used SOAP-de novo

(Luo et al. 2012) (kmer¼ 31) to assemble the unmapped

reads into scaffolds. As an alternative, we also assembled

the unmapped reads using kmers of 21 and 25. However,

the two genomes assembled with these alternative kmers

showed significantly shorter introns (supplementary fig. 1,

Supplmentary Material online) and were thus not used for

final analyses. Finally, we located Y-linked scaffolds by a tar-

geted search (at� 99% identity using blastn [Altschul et al.

1990]) of the exons of the Y-specific cDNAs that we reported

previously (Cortez et al. 2014).

Echidna does not have a reference genome available. Thus,

we assembled a female genome with SOAP-de novo

(kmer¼ 31) using the entire set of female Illumina genomic

reads. We also assembled a female genome for marmoset

and rat with SOAP-de novo (kmer¼ 31) using the entire set

of female Illumina genomic reads. For the male echidna assem-

bly, we first mapped the Illumina male genomic reads (two

mismatches allowed per read) to the newly assembled female

genome. The unmapped paired-end reads were then used to

assemble Y-specific scaffolds with SOAP-de novo (kmer¼ 31).

We located Y-linked scaffolds by a targeted search (at� 99%

identity using blastn) of the exons of the Y-specific cDNAs that

we reported previously (Cortez et al. 2014).

As the echidna female assembly was highly fragmented,

and thus the subtraction approach could have been inefficient

in removing reads that are shared between males and

females, we verified whether the Y-linked scaffolds in the

echidna might be formed of chimeric sequences. We devel-

oped two approaches of increased stringency to generate

male genomes: From the subset of reads that did not map

to the assembled echidna female genome, we removed all

the reads (and their pairs) that showed kmers of 30 or 40 nt

shared with any of the echidna female genomic reads. The

remaining reads, which represent male-specific kmers, were

then assembled into scaffolds using SOAP-de novo (kmer¼
31). The two kmer-derived genome assemblies were ex-

tremely fragmented (millions of contigs). However, all known

Y exons and introns that we obtained with the less-stringent

filtering approach (the one for which we did not use kmers)

were found in these two alternative genome assemblies dis-

tributed however among various smaller contigs, thus con-

firming that our original Y scaffolds were not chimeric. The

genome assembly that we obtained without the kmers filter-

ing showed scaffolds with Y exons linked to longer intronic

sequences (total length¼ 54,000 nt; 30 kmer¼ 11,000 nt,

and 40kmer¼ 14,000 nt) and was thus used for all further

analyses.

Collecting Data from Reference Genomes

We studied one-to-one orthologous genes in primates,

rodents, and monotremes (see supplementary table 2,

Supplmentary Material online, for a detailed list of the genes

we analyzed). In platypus we decided to work with the X-

gametologs we previously identified (Cortez et al. 2014) and

well-annotated X5-linked genes; X5 is the oldest X chromo-

some shared between monotremes and it is fully differenti-

ated from the Y5 chromosome (Rens et al. 2007; Warren et al.

2008; Cortez et al. 2014). For platypus, human and mouse

we downloaded the protein-coding exonic and intronic

Link et al. GBE
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sequences for the X and autosomes from the Ensembl data-

base (release 77). Finally, we also downloaded all known Y

protein-coding exons and intronic sequences for human and

mouse Y genes from the Ensembl database.

Annotation of Scaffolds

We selected all the scaffolds in the platypus, echidna, mar-

moset and rat male assemblies that mapped to known Y

genes and Y transcripts. We then chose the best scaffolds

based on three features: 1) best match accuracy (�99% iden-

tity), 2) the maximum amount of cDNA they covered, and 3)

maximum length of the scaffold. We aligned the selected

scaffolds to the cDNA and CDS of the Y genes/transcripts

using MUSCLE (3.8.31) (Edgar 2004). We annotated the

resulting concatenated alignments of the scaffolds as follows:

sequences that matched to the CDS were marked as exons,

the sequences that mapped only to the cDNA as UTRs,

and the sequences in between the exons as introns. We ap-

plied the same above-mentioned strategy to align the female

scaffolds to the cDNAs sequences of annotated X and

autosomal genes.

Obtaining Orthologous Intronic Alignments

To limit the risk of including non-orthologous positions in the

alignments, we considered only the intronic sequences that

were located in the same scaffolds as conserved one-to-one

orthologous exons in closely related species. Thus, for the Y

sequences in monotremes, we first mapped the exons from

platypus to the scaffolds of echidna with blastn and selected

the best pairs of scaffolds with a minimum identity score of

90%. When we found more than one matching scaffold with

the same identity score, we selected the longest one. We

ordered the Y scaffolds of echidna following the structure

and strand orientation of the platypus Y transcripts (gene

annotations were based on Ensembl annotations). Then, we

used Lagan20 (Brudno 2003), an alignment program

designed to work on noncoding sequences, to align the

concatenated exonic and intronic sequences from platypus

and echidna. We followed the same protocol to align the

echidna X and autosomal scaffolds to the orthologous

sequences in platypus, to align the marmoset Y, X, and auto-

somal scaffolds to the orthologous sequences in human and

to align the rat Y, X, and autosomal scaffolds to the

orthologous sequences in the mouse. We then aligned the

one-to-one orthologous intronic sequences with Lagan20 and

removed ambiguous positions using Gblocks (Talavera et al.

2007). Gblocks scans a multiple sequence alignment using a

sliding window of ten positions (minimum block) and removes

segments that are misaligned and may represent nonorthol-

ogous regions. We excluded the first protein-coding exon and

the following intron of all genes from the alignments because

these introns often contain regulatory elements (Chamary

and Hurst 2004).

Curating Introns for Hidden Exons and Other Nonneutrally
Evolving Positions
Since the annotation of exons in our introns was based on

reported cDNAs that were either obtained from RNAseq data

(Cortez et al. 2014) or derived from nonexhaustive database

annotations (especially in the case of platypus), it is not un-

likely that introns may contain hidden exons (Pink et al. 2010).

Genuine intronic sequences are expected to show the same

frequencies of single nucleotide changes along their entire

sequences (Pink et al. 2010), as opposed to exons that are

expected to have more nucleotide changes at the third codon

position due to the redundancy in the genetic code. In order

to remove hidden exons from the alignments, we calculated

the frequencies of single nucleotide changes at the first, sec-

ond, and third codon positions from all annotated exons of Y,

X, and autosomal genes from monotremes, primates, and

rodents (annotations were downloaded from the Ensembl

database). We measured an average 10% increase in single

nucleotide changes at the third codon position relative to the

first and second position in the annotated exons. Based on

these expected frequencies of single nucleotide changes in

exons, we scanned the introns using an overlapping sliding

windows of 51 nt (our definition of the shortest exon) to ac-

count for all possible reading frames and removed those win-

dows that: 1) did not have stop codons, 2) were on the same

strand orientation as the other exons in that gene, and

3) showed at least a 10% increase frequency of substitutions

in the third codon position. This method removed in average

2% of windows.

We later removed from the alignments the first 20 intronic

nucleotides flanking the exons in order to remove regulatory

sites such as splicing sites and splicing enhancers (Pink et al.

2010). Methylated cytosines followed immediately by a gua-

nine have an increased likelihood of being transformed into a

thymine, resulting in a C-to-T transition that is independent of

replication (Jabbari and Bernardi 2004). Consequently, the

effect of male mutation bias is obscured at CpG sites. We,

therefore, removed all CpG sites from our alignments because

male mutation bias is expected to be much lower at CpG sites

than at nonCpG sites (Taylor 2005). In order to remove the

signal contained at CpG sites, we screened both strands of

the intronic sequence alignments and removed all CpG posi-

tions. Estimates were lower after this step, which we consid-

ered as an important indication that CpG sites were

influencing the calculations.

The alignment program Lagan20 will correctly align the

orthologous regions of two sequences, but it will also create

gap-rich alignments of intronic segments that are not orthol-

ogous (lineage-specific insertions and deletions are common

in intronic sequences). We used Gblocks (Castresana 2000) to

extract the orthologous alignments and to remove the parts

of our alignments that were gap-rich regions, representing

spurious alignments. This step is especially important if the

species divergence time is big, given that these alignments
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are expected to show a higher noise-to-signal ratio. We opti-

mized the parameters of Gblocks for our study as follows:

“allowed gap positions”¼ all and “minimum length of

blocks”¼ 30 nt. Finally, only those genes showing alignments

>1,000 bp were considered for further analyses. This thresh-

old was defined to avoid extreme dS values due to short

sequences.

Calculating the Substitution Rates for Y, X, and Autosomes

Although we excluded from our alignments all those positions

that seemed to be under evolutionary constraints, we could

not exclude the possibility that some other intronic regions

could have low substitution rates (e.g., undetected micro-

exons) or, alternatively, could represent mutation hotspots.

In order to minimize the noise that could be introduced by

the fluctuations in substitution frequencies within introns and

within intronic positions, we used the nonparametric double

bootstrap approach described by Axelsson et al. (2004),

which bootstraps the intronic alignments by both introns

and sites: For a given chromosomal class (Y, X, and auto-

somes), we randomly resampled introns until we obtained

the same intron number as in the original data set. From

these, we randomly resampled sites until we obtained the

same amount of sites as the randomly sampled introns

would have if they were concatenated. We repeated this

procedure 1,000 times.

For each random alignment, we calculated the substitution

rate using the Tamura–Nei model with the baseml program,

implemented in the PAML44 package (Yang 1997). The

Tamura–Nei is a model of DNA sequence evolution that cor-

rects for multiple hits and takes into account the substitution

rate differences between nucleotides and the inequality of

nucleotide frequencies (Tamura and Nei 1993). Moreover,

the Tamura–Nei model produces good estimates and outper-

forms other models in simulated data (Tamura and Kumar

2002) when GC content is stationary. Therefore, we verified

that our sequences showed stationary GC content using the

neighbor-dependent evolution model (Arndt et al. 2003).

Since Y, X, and autosomal introns show important differ-

ences in GC content (supplementary figs. 2 and 3 and table 3,

Supplmentary Material online), we decided to verify that the

calculations of substitution rates and hence the pattern of

male mutation bias was not affected by the differences in

GC content. Thus, we adapted the double-bootstrap ap-

proach described above to reanalyze the intronic sequences

in monotremes: We fixed the number of randomly chosen

A/T positions to be equal to the number of randomly chosen

G/C positions in the alignments. From these new alignments,

with fixed GC%¼ 50 for all chromosomal classes (supple-

mentary figs. 2 and 3 and table 3, Supplmentary Material

online), we then calculated the substitution rates using the

Tamura–Nei model and the baseml program implemented in

the PAML44 package.

Analyzing Male Mutation Bias and Other Confounding
Forces

In order to study the influence on chromosomal substitution

rates of male mutation bias and other confounding forces we

constructed a Generalized Linear Model (GLM). We tested

whether differences in substitution rates between genes

from the three chromosomal classes are associated with a

variety of forces. We collected data for 698 one-to-one

orthologous genes between mouse and rat; rodents were

the only species for which these variables were available.

We thus worked with 6 Y-linked genes (maximum number

of Y genes for which we could find data), 346 X-linked genes

(maximum number of X genes for which we could find data),

and 346 randomly selected autosomal genes. The predictors

were: dN/dS ratios (as proxy of selection), germline expression

levels (as proxy of transcription-coupled repair), replication

timing and male mutation bias based on the time each chro-

mosome spends in the male germline (supplementary table 4,

Supplmentary Material online). We also gathered recombina-

tion data for mouse (Smagulova et al. 2011), but found in-

sufficient overlap between the replication information and the

genomic coordinates of the selected intronic sequences for

which we collected all other variables.

For each of the 698 genes included in the model we

obtained: 1) Precomputed dN/dS ratios from the Ensembl data-

base. 2) Expression values were calculated for germline tissues,

specifically, spermatids and spermatocytes (Soumillon et al.

2013). Briefly, reads were mapped to the reference genome

(Ensembl version 83) using Hisat2 (Kim et al. 2015) and result-

ing FPKM values were then obtained and normalized with

Cufflinks (Trapnell et al. 2013); we used log2 transformed me-

dian values across tissues. 3) The www.replicationdomain.org,

last accessed August 30, 2017 database provides full sets of

high-resolution maps of replication timing across the mouse

genome. We calculated the median of replication timing based

on the genomic coordinates of the 698 one-to-one ortholo-

gous genes. We used replication timing data for early devel-

opmental cells (differentiation state ESC) because replication

timing in male germline was unavailable. We note, however,

that as replication timing can change, our estimates of the

impact of replication timing are likely to be minimum esti-

mates. 4) In order to include male replication bias as a predic-

tor, we used the time each chromosome spends in the male

germline, that is, Y-linked sequences spend 100% of their time

in the male germline, whereas autosomes spend 50% of their

time in the male germline and the X chromosome spends one-

third of its time in the male germline. For this reason, we used

the following values for the three chromosomal classes: Y¼ 1,

X¼ 1/3, and A¼ 1/2. The response variable was both the

mean substitution rate for the chromosomal classes and a win-

dowed substitution rate for the chromosomal classes.

We worked with three alternative models. We first defined

in the model the mean substitution rate as response variable
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and included 1) all values for the 698 genes for each predictor

and 2), the six central values (six values around the median) of

each predictor, thus the three chromosomal classes contained

the same number of values (the Y chromosome has six genes

with available data). We tested a third model where we sorted

the response’ and the predictors’ variables and then divided

their values into six windows of equal size. We calculated the

mean of each window and included these values in the

model. We examined the three GLM using the following for-

mula: glm (observed.substitution.rate.median.or.windowed

�þ dN.dSþ expression.level;þ replication.timingþ time.in.

male.germline, family¼ gaussian). Variables followed an ap-

proximately normal distribution so a Gaussian distribution

for the GLM was specified (supplementary fig. 4,

Supplmentary Material online).

Calculating a

We used the medians of the 1,000 bootstrapping rounds as

the substitution rates for Y, X, and autosomes and we intro-

duced these values into the three equations by Miyata (Miyata

et al. 1987) in order to obtain the empirical values of a.

Moreover, after each of the 1,000 bootstrapping rounds

three a values were calculated, and the resulting distributions

served to calculate the 95% confident intervals of the median

by selecting the 1þ n/2þ sqrt(n)/2 position as upper confi-

dence level and the n/2 � sqrt(n)/2 position as the lower

confidence level (n¼ sample size, i.e., 1,000 values).

Estimating the Proportion of Variation in Substitution Rates
due to Male-Biased Mutation

The proportion of variation in substitution rates was obtained

from 1,000 resampling rounds. For each round, we randomly

selected six autosomal, six X-linked genes from the gene pool

of one-to-one orthologous genes between human–marmo-

set, mouse–rat and platypus–echidna. The six Y-linked were

always selected. We worked with six genes for each chromo-

somal class because we had only six Y genes/transcripts that

we could use for all the species with>1,000 bp of aligned and

curated intronic sequences. We then estimated the variance

in substitution rates of the six autosomal, six X-linked and six

Y-linked genes. This value was considered as the variance

from the initial gene set. Subsequently, we adjusted the Y

and X rates using two correcting factors that were based

on the time each chromosome spends in the male germline.

The factor by which we adjusted the Y rates to correct for the

acceleration of these sequences was a reduction of 50% of

the original value. The factor by which we adjusted the X rates

to correct for the slower rate of these sequences was an in-

crease in 33% of the original value. We then calculated a

second variance with the unchanged substitution rates of

the six autosomal genes and the adjusted substitution rates

of the X and Y genes. This value was considered as the var-

iance from the adjusted gene set. Lastly, we defined an index

of the amount of change as follows: (variance from the initial

gene set � variance of the adjusted gene set)/variance from

the initial gene set.

All statistical tests were performed using the R package,

standard libraries. Data was plotted using the R package,

“ggplot2” library. Code used in this work can be downloaded

from the following public FTP server: ftp://kanan.ccg.unam.

mx/PDG/dcortez/Link_etal/, last accessed August 30, 2017.

Results

Assembly and Alignment of Intronic Sequences

We estimated the degree of male mutation bias in monot-

remes (platypus and echidna) and, for comparison, in selected

primates (human and marmoset) and rodents (mouse and rat)

based on intronic sequences from the X, Y, and autosomal

chromosomes. Intronic sequences generally experience less

purifying selection than synonymous sites, and intronic sub-

stitution rates therefore usually constitute better proxies for

chromosomal mutation rates (Hurst and Ellegren 1998;

Lercher et al. 2001). We selected Y and X sequences that

are located outside the pseudoautosomal region because

sex chromosomes still recombine at this region during

meiosis.

Because there is no reference genome for the short-

beaked echidna, and the five Y chromosomes are missing

from the published platypus genome assembly (Warren

et al. 2008), we devised a strategy based on RNA and DNA

sequencing reads to assemble intronic sequences from the

three chromosome classes (Materials and Methods). In brief,

we first used Illumina short genomic reads (Cortez et al. 2014;

Necsulea et al. 2014) to assemble the female echidna, mar-

moset and rat genomes, and identified X-linked and autoso-

mal scaffolds guided by orthologous protein-coding

sequences in the platypus, human and mouse genomes.

Next, we assembled de novo male-specific DNA scaffolds

from platypus, echidna, marmoset, and rat using our previ-

ously published subtraction approach (Cortez et al. 2014) and

extracted the introns of previously annotated Y-linked genes.

Fully sequenced Y chromosomes were already available for

human and mouse (Tilford et al. 2001; Church et al. 2009;

Soh et al. 2014). The primate and rodent species were se-

lected because male mutation bias has been well character-

ized in these species. However, our choice of species was also

influenced by two additional factors: First, the same type of

short genomic reads that we used for echidna were available

also for marmoset and rat, thus allowing us to apply the same

methodology to all species pairs (while relying on the refer-

ence genomes of human, mouse and platypus). Second,

given the uncertainty associated with the divergence time

of echidna and platypus that ranges from 17 to more than

50 Myr (Rowe et al. 2008; Warren et al. 2008), the mouse–rat

(�25 Ma) and the human–marmoset (�42.6 Ma) compari-

sons could help to assess whether the type and amount of
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data we collected for monotremes would be adequate to

detect male mutation bias.

To avoid alignment of nonorthologous sequences, we only

considered introns that were flanked by conserved ortholo-

gous exons from well-annotated genes (Materials and

Methods). The alignments were trimmed to remove sequen-

ces that might otherwise bias our estimates of the neutral

substitution rate, including annotated exons, first introns

(that often contain regulatory sequences), potential hidden

exons, nonorthologous positions, fast-evolving CpG sites,

and sequences involved in splicing regulation (Materials and

Methods). We estimated intronic substitution rates based on

pairwise alignments (Miyata et al. 1987; Chang et al. 1994;

Makova and Li 2002; Axelsson et al. 2004; Pink et al. 2010) of

X-linked, Y-linked, and autosomal one-to-one orthologous

genes between platypus and echidna, human and marmoset,

as well as mouse and rat. For monotremes, we obtained

intronic sequences for 50 X-linked genes, 130 autosomal

genes, and 14 Y transcripts. For primates we obtained intronic

sequences for 347 X-linked genes, 11,758 autosomal genes,

and 6 Y genes, whereas for rodents we obtained intronic

sequences for 330 X-linked genes, 9,428 autosomal genes,

and 7 Y genes. A list of the genes used in this study can be

found in the supplementary table 2, Supplmentary Material

online. The elevated fragmentation of the platypus genome

and the seemingly elevated number of repeats in the echidna

genome explains the lower number of genes for which we

could recover sufficient intronic sequences. Nonetheless, we

could work with hundreds of sequences in all species, which

would allow obtaining balanced values.

Initial Evidence of Moderate Male Mutation Bias in
Monotremes

We first analyzed the global autosomal variation in monot-

remes, primates, and rodents by calculating the substitution

rates of all one-to-one orthologous genes between platypus–

echidna, human–marmoset, and mouse–rat (fig. 1). Notably,

we observed that all autosomes in all species comparisons

evolved more slowly than the Y chromosome and faster

than the X, which fall as outliers in the distributions (fig. 1).

This observation supports the notion of male mutation bias as

a general determinant of chromosomal substitution rates in

the three mammalian lineages investigated.

Although we filtered our alignments as stringently as pos-

sible, we could not completely exclude the possibility that

some sites within them evolved under purifying selection

(e.g., as part of undetected exons) or represent mutation

hotspots. To minimize the influence of such fluctuations on

our estimates of chromosomal substitution rates and in order

to correct for the different number of analyzed genes, we

generated 1,000 intron alignments for each chromosome

class and species pair by bootstrapping for both introns and

sites (Axelsson et al. 2004) (see Materials and Methods and

table 1). For each alignment, we then calculated one single

substitution rate under the Tamura-Nei model, after confirm-

ing that GC content is stationary (Materials and Methods,

supplementary tables 5 and 6, Supplmentary Material online).

The analysis was consistent with male mutation bias in

monotremes (fig. 2a and table 2), with the Y chromosomes

evolving significantly faster than the autosomes, which in turn

evolve significantly faster than the X chromosomes

(Benjamini–Hochberg corrected P< 0.05, Welch Two

Sample t-test). Although the X, Y, and autosomal chromo-

somes differ in terms of GC content (median for X-linked

introns: 44.8%; Y-linked: 37.1%; autosomal: 40.1%), we

did not find that this difference contributed to the observed

differences in substitution rates between chromosome classes

(Materials and Methods; supplementary figs. 2 and 3 and

table 3, Supplmentary Material online), possibly because we

removed the CpG mutations from the analyses.

We also detected signatures consistent with male mutation

bias in primates and rodents (Chang et al. 1994; Li et al. 2002;

Makova and Li 2002; Wilson Sayres et al. 2011; Venn et al.

2014) (fig. 2b and c and table 2). Overall, sequence divergen-

ces are slightly higher between the two rodents than between

the two primates, although these rodents diverged more re-

cently (�25 Ma) than the primates (�42.6 Ma) (Hedges et al.

2006), which is consistent with the substantially higher geno-

mic substitution rate per generation in rodents (Li et al. 1996).

We observed higher substitution rates of autosomes and X

sequences between monotremes and primates (Benjamini–

Hochberg corrected P> 0.05, Welch Two Sample t-test),

which, given the uncertainty of the time platypus and echidna

split (17 to>50 Ma [Rowe et al. 2008; Warren et al. 2008]),

could support a reduction in the genomic substitution rate on

the monotreme lineage, as previously suggested (Warren

et al. 2008).

Male Mutation Bias Is the Primary Force Shaping
Chromosomal Substitution Rates in Monotremes and
Control Species

Confounding forces may influence substitution rates and con-

sequently cause discrepancies in male mutation bias esti-

mates. For instance, purifying selection acting on the Y and

X sequences might reduce the mutation load; the number of

weakly deleterious mutations could increase on the Y chro-

mosome by background selection and hitchhiking effects

when the effective population sizes and recombination rates

are low; transcription-coupled repair could reduce the muta-

tion rate of the X chromosome because is more gene-rich

than the Y chromosome; finally, late replication timing would

increase the mutation rates of the sex chromosomes.

However, male mutation bias and these alternative forces

have not been explored in a common statistical framework.

We, therefore, decided to verify whether the observed sub-

stitution rates of Y, X, and autosomes could be significantly
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associated with purifying selection, transcription-coupled re-

pair, replication timing, and time spent in male germline using

a dedicated data set which was only available for rodents (see

Materials and Methods). We gathered these variables for one-

to-one orthologous genes between mouse and rat. Next, we

decided to explore the robustness of the associations between

the predictors and the response variable using different sets of

parameters.

We built three GLM, one using all available values and two

with the same amount of values for the three chromosomal

classes (see Materials and Methods). We defined as response

variable both the mean substitution rates and a windowed

substitution rate for each chromosomal class. We included as

predictor variables all potential forces influencing substitution

rates. The first GLM, which included all values, returned a

highly significant relationship between time spent in male

germline and the observed substitution rates (P< 2e-16;

odd ratio 1.16, 95% CI: 1.1622–1.1626). The two alternative

GLM, which had the same number of values for each chro-

mosomal class, also resulted in a significant relationship be-

tween time spent in male germline and the observed

substitution rates (P< 6.48e-13; odd ratio 1.16, 95%

FIG. 1.—Substitution rates across all chromosomes in monotremes and control species. (a, b) Substitution rates from the human–marmoset compar-

isons, sorted according to the human homologous chromosomes (a) or the marmoset homologous chromosomes (b). (c, d) Substitution rates from the

mouse–rat comparisons, sorted according to the mouse homologous chromosomes (c) or the rat homologous chromosomes (d). (e) Substitution rates from

the platypus–echidna comparisons, sorted according to the platypus chromosomes. Data for the echidna could not be plotted because there is no reference

genome for this species. Chromosomes are sorted according to their median substitution rate in descending order, from left to right. P-values were obtained

by applying the Benjamini–Hochberg-corrected Welch Two Sample t-test. See supplementary table 7, Supplmentary Material online for correspondence

between human–marmoset and mouse–rat homologous chromosomes.
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CI: 1.165–1.167). These models showed a significant associ-

ation between dN/dS and the observed substitution rates too

(P< 0.00047; odd ratio 1.08, 95% CI: 0.99–1.11). We did

not find any significant associations between the observed

substitution rates and transcription in the male germline or

replication timing. These results suggest that male replication

bias is the primary force shaping substitution rates in rodents,

although selection is playing a significant role as well. Detailed

dN/dS patterns across chromosomal classes (fig. 3) reveal that

Y sequences are under weaker purifying selection (higher

dN/dS ratios), which was previously reported based on com-

parisons of X and Y gametologs (Wilson and Makova 2009).

Given that the observed patterns between rodents, monot-

remes, and primates are remarkably similar (figs. 1 and 2), we

can speculate that the results obtained for rodents are con-

sistent with male mutation bias being the main force shaping

substitution rates in monotremes and primates as well.

After establishing the relative importance of male mutation

bias, we decided to quantify the degree of male mutation bias

(a) using Miyata’s equations (eqs. 1–3). Although theory

Table 1

Median Values of the Chromosomal Substitution Rates and Variation Coefficients in the Three Chromosomal Classes

Species Chromosome Median Standard Deviation 95% CI (lower–upper)

Monotremes (Platypus–Echidna) Autosomes 0.1213 60.03683 0.12052–0.12219

X 0.105 60.02164 0.10423–0.10568

Y 0.1888 60.0211 0.18715–0.19068

Primates (Human–Marmoset) Autosomes 0.154 60.0297 0.15245–0.15519

X 0.1387 60.0181 0.1373–0.14046

Y 0.2317 60.0189 0.22968–0.23369

Rodents (Mouse–Rat) Autosomes 0.1926 60.011 0.19158–0.1934

X 0.1777 60.0136 0.17657–0.17901

Y 0.2511 60.0242 0.24973–0.25328

FIG. 2.—Distribution of chromosomal substitution rates in monotremes and control species. Distributions of chromosomal substitution rates for Y, X,

and autosomes in monotremes (a), primates (b), and rodents (c) obtained from 1,000 bootstrap rounds. Significance of the Welch Two Sample t-test

Benjamini–Hochberg-corrected P values are as follows: ***P<0.001, *P<0.05. Error bars, maximum and minimum values, excluding outliers. The red line

at value 0.2 serves as visual aid.

Table 2

Empirical, Adjusted-Fixed and Final Adjusted Values for the Chromosomal Substitution Rates and a Estimates

Species Y.emp A.emp X.emp a.X/Y a.Y/A a.X/A

Monotremes 0.1888 0.1213 0.105 2.99 (2.9–3.07) 3.51 (3.29–3.69) 2.35 (2.12–2.55)

Primates 0.2317 0.154 0.1387 2.52 (2.44–2.59) 3.03 (2.89–3.24) 1.84 (1.71–1.97)

Rodents 0.2511 0.1926 0.1777 1.78 (1.75–1.81) 1.87 (1.82–1.92) 1.6 (1.53–1.68)

NOTE.—emp is the empirical value directly obtained from the analysis of intronic sequences; a.X/Y, a.Y/A, a.X/A are the three a values with their respective 95% confident
intervals.
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predicts that the three equations should give the same esti-

mate of a, earlier studies in great apes, rodents and birds

showed that this is not the case (Smith and Hurst 1999;

Axelsson et al. 2004; Pink et al. 2010; Wilson Sayres et al.

2011). Consistent with these observations, although the esti-

mates of a seem similar, they show nonoverlapping confi-

dence intervals for all three species pairs (table 2). For

monotremes, the median a values for the Y/X, Y/A, and X/A

comparisons are 2.99, 3.51, and 2.35, respectively (table 2),

suggesting moderate mutation bias in this lineage.

Discrepancies between a estimates from Y/X, Y/A, and X/A

comparisons are likely due to confounding forces influencing

the three estimates by Miyata, although male replication bias

seems to be the main force shaping substitution rates. We cal-

culated the average and range across all three estimates, X/A,

Y/A, and X/Y as a good indicators of a. Monotremes show

moderate male mutation bias, corresponding to an average

a value of 2.95 with values ranging from 2.12 to 3.69 (table 2).

Our estimates for the control species show moderate male

mutation bias in the human–marmoset comparison (average

a: 2.46, range: 1.71–3.24, table 2; previous estimates for

human–chimpanzee: 4–6 [Shimmin, Chang, and Li 1993;

Makova and Li 2002; Presgraves and Yi 2009; Kong et al.

2012; Venn et al. 2014]; table 2) and weak male mutation

bias in rodents (average a: 1.75, range: 1.53–1.92, table 2;

previous estimates: 1–3.5 [Wolfe and Sharp 1993; McVean

and Hurst 1997; Smith and Hurst 1999; Li et al. 2002;

Malcom et al. 2003; Sandstedt and Tucker 2005]; table 2).

Our human–marmoset value is considerably lower than what

was previously been observed for human–chimpanzee (a¼
4–6 [Makova and Li 2002]). This may well reflect the possibil-

ity the chimpanzee has a longer generation time and more

cell divisions in males, thus strong male bias (Venn et al.

2014), than does the marmoset and the ancestral species

intermediate between human and marmoset. Whether the

longer divergence times between human and marmoset

(�40 Ma) compared with human and chimpanzee (�6 Myr)

is of itself of relevance is unclear.

So far we established that male replication bias seems to be

the primary force shaping substitution rates of the three chro-

mosomal classes. However, previous studies showed that sub-

stitution rates vary between and within chromosome (Matassi

et al. 1999; Lercher et al. 2001; Malcom et al. 2003), which

could reflect differential effects of confounding forces at the

gene level. The variance across the substitution rates of auto-

somal, X-linked and Y-linked genes when analyzed together

could be used as an indicator of the general variability within

and between chromosomal classes. The influence of male

replication bias as the primary force shaping substitution rates

could be inferred from changes in variance after the substitu-

tion rates have been adjusted following the time each chro-

mosomal class spends in the male germline (X-linked genes

would accumulate 33% less substitutions than autosomes

and Y-linked genes would accumulate 50% more substitu-

tions than autosomes). When the new adjusted variance

across individual genes is smaller than the original variance,

in theory, this would suggest that substitution rates at the

gene level are consistent with male replication bias, despite

the initial within-chromosomal variability. On the other hand,

when the adjusted values fall outside of the autosomal distri-

bution, the new variance would be larger than the initial var-

iance, and this would mean that substitution rates of the

analyzed genes are not consistent with male replication bias

and other confounding factors are playing a predominant role

influencing substitution rates in this particular set of genes.

In order to estimate the proportion of variation in substi-

tution rates that is owing to replication effects, we resampled

1,000 times the autosomal and X-linked gene pools of all

FIG. 3.—Selection, transcription and replication timing across chromosomal classes. Distributions of (a) dN/dS ratios, (b) expression levels, and (c)

replication timing for Y, X, and autosomes in rodents. Significance of the Welch Two Sample t-test Benjamini–Hochberg-corrected P values are as follows:

***P<0.001, *P<0.05. Error bars, maximum and minimum values, excluding outliers.
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one-to-one orthologous genes between the species pairs. For

each of the 1,000 rounds, we randomly selected six autoso-

mal and six X-linked genes. We used the same Y-linked genes

for all the analyses because this was the maximum number of

Y genes/transcripts that could be used for the all the species.

We calculated the substitution rates for all genes individually.

For each initial and adjusted variance, we can estimate an

index of the amount of change (see Materials and

Methods). As the new variance leads toward zero, the result-

ing value of this formula leads to 1, which would mean that

100% of the variation at the gene level is explained by male

replication bias. We found that in monotremes, primates and

rodents the new variance is frequently smaller than the initial

variance (fig. 4) and male replication bias explains �68–83%

of the differences at the gene level (monotremes median

¼ 72%, rodents median¼ 68%, primates median¼ 83%).

These values are in agreement with the results obtained in

the GLM, which show male replication bias is the main force

shaping substitution rates in rodents, although its relative con-

tribution varies across species. In addition, the strength of

male mutation bias is consistent with the a values: monot-

remes and primates show the highest a estimates (value range

2.12–3.69 and 1.71–3.24, respectively) and also present the

highest percentages of the by-gene variation explained by

male replication bias. On the other hand, rodents show the

lowest a (value range 1.53–1.92) and also the lowest percen-

tages of the by-gene variation explained by male replication

bias.

Discussion

The overabundance of replication errors in the male germline

has been proposed as the main force shaping global chromo-

somal substitution rates in placental mammals (Miyata et al.

1987; Li et al. 2002; Makova and Li 2002; Wilson Sayres et al.

2011; Venn et al. 2014). Its importance relies on the notion

that mutations would be primarily produced in males, a sce-

nario that has been dubbed “male-driven evolution”

(McVean and Hurst 1997; Smith and Hurst 1999; Wolfe

and Sharp 1993; Li et al. 2002; Malcom et al. 2003;

Sandstedt and Tucker 2005). Therefore, the strength of

male mutation bias could be directly linked to the genomic

variability of a lineage or species. Estimates of male mutation

bias have been calculated in placental mammals (Wilson

Sayres et al. 2011), with great apes showing the highest rates

(Venn et al. 2014), and our previous phylogenetic assessments

of synonymous substitution rates of Y- and X-linked genes

(and autosomal orthologs from outgroup species) in marsu-

pials suggest substantial male mutation bias in this major

mammalian lineage as well (Cortez et al. 2014). Here, we

examined whether male mutation estimates particular to pla-

centals, marsupials, and birds are also observed in monot-

remes, which have many biological and genomic

peculiarities such as egg-laying, venom production (only platy-

pus [Wong et al. 2013]), microchromosomes (Warren et al.

2008), an unique sex system composed of nine or ten differ-

ent chromosomes (Rens et al. 2004; Rens et al. 2007), and an

FIG. 4.—Male mutation bias at the gene level. Sorted values from 1,000 resampling rounds. Each value represents the difference between the initial and

the adjusted variances. The derived percentage represents the proportion of variation at the gene level explained by male replication bias. Values for

monotremes are in blue. Values for rodents are in pink. Values for primates are in yellow. The boxplot summarizes the data contained in three curves; the

species color-code is the same. The horizontal red line at value 70% serves as visual aid to show the number of resamplings in monotremes, primates and

rodents above this proportion.
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atypical germline that lacks MSCI (Daish et al. 2015). Our

results predict that the male germline goes through approxi-

mately 2.95 times more rounds of cell divisions (DNA replica-

tions) per generation than does the female germline in

monotremes.

A general caveat in our study is the assumption that

most of the positions in the analyzed sequences are neu-

trally evolving, such that the observed substitution rates

can be taken as proxies for the underlying mutation rate.

Violations of this assumption can potentially introduce

biases in the estimates of male mutation bias. A recent

study of 29 mammalian genomes revealed that<30% of

intronic positions are under evolutionary constraint

(Lindblad-Toh et al. 2011). Thus, we sought to limit biases

in our estimates by curating the intronic alignments (see

Materials and Methods) and by applying a double boot-

strapping approach that subsampled both introns and

positions, taking advantage of the fact that constrained

intronic positions are not randomly distributed (they tend

to be closer to splicing sites).

Our work highlights the importance of using the three

chromosome classes to evaluate the degree of male mutation

bias. We examined whether substitution rates variations be-

tween chromosomes are a consequence of male mutation

bias or alternative forces. Although we could not directly

test this hypothesis in monotremes due to lack of information,

we performed the analysis in rodents using a multivariate

model. Our results suggest that substitution rates are mostly

influenced by male replication bias (or relative time spent in

the male germline more precisely) and that the Y chromo-

some is under weaker purifying selection, as also previously

noted (Wilson and Makova 2009). Transcription and

replication-timing seem to be not significant when included

in the same statistical framework together with other factors

(substitution rates were previously correlated with late-

replication in Y-linked genes [Pink and Hurst 2010]). All three

of Miyata’s estimates are clearly influenced by confounding

forces, although male replication bias stands as the main

driver of substitution rates.

Our work represents a comprehensive effort to analyze the

contribution of male mutation bias and its strength in monot-

remes and in control species, rodents and primates.

Furthermore, our analyses may serve to estimate the propor-

tion of variation in substitution rates that is owing to replica-

tion effects. The strength of male mutation bias seems to be

specific to the species, that is, male mutation bias has less

intensity (probably fewer male germline divisions) in rodents

than primates and monotremes (fig. 3). These results confirm

previous observations that showed limited influence of male

mutation bias in rodents (Pink and Hurst 2010; Pink et al.

2010), but a strong effect of this phenomenon in primates

(Makova and Li 2002; Venn et al. 2014). In the future, our

methods can be applied to nonmodel vertebrate species with

poor genome assemblies.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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